Endothelial-Monocyte Activating Polypeptide II Suppresses the In Vitro Glioblastoma-Induced Angiogenesis by Inducing Autophagy
نویسندگان
چکیده
The obstacle in delivering therapeutics to glioblastoma (GBM) is tumor-induced angiogenesis which leads to the formation of abnormal vessels and a dysfunctional blood-tumor barrier. Here, we elucidated the effect of endothelial-monocyte activating polypeptide II (EMAP II) on the GBM-induced angiogenesis as well as its potential mechanisms. Our results proved that EMAP II inhibited the viability, mitochondrial membrane potential, migration and tube formation of GBM-induced endothelial cells (GECs) by inducing cell autophagy, demonstrated by cell viability assay, JC-1 staining assay, transwell assay and tube formation assay, respectively. Cell autophagy was induced by EMAP II through the observation of autophagic vacuoles formation and the up-regulation of microtubule-associated protein-1 light chain-3 (LC3)-II and p62/SQSTM1 expression, demonstrated by transmission electron microscopy analysis, immunofluorescence assay and Western blot assay. The activity of PI3K/AKT/mTOR signal pathway could be inhibited by the EMAP II treatment. Furthermore, unfolded protein response (UPR)-related proteins (GRP78, eIF2α, and CHOP) were up-regulated by EMAP II, which suggest that GECs exposed to EMAP II experienced endoplasmic reticulum stress. Further, mechanistic investigations found that EMAP II reduced the miR-96 expression which could directly target the 3'-UTR of these UPR-related proteins, and over-expression of miR-96 inhibited LC3 and p62/SQSTM1 expression by down-regulating these UPR-related proteins in GECs. Moreover, the combination of EMAP II with miR-96 inhibitor showed the inhibitory effect on the viability, migration, and in vitro tube formation of GECs, which are critical for angiogenesis. Taken together, we have demonstrated the fact that EMAP II resulted in the decreased GBM-induced angiogenesis by inducing autophagy, which might contribute to establishing potential strategies for human GBM treatment.
منابع مشابه
Autophagy Induction by Endothelial-Monocyte Activating Polypeptide II Contributes to the Inhibition of Malignant Biological Behaviors by the Combination of EMAP II with Rapamycin in Human Glioblastoma
This study aims to investigate the effect of endothelial-monocyte activating polypeptide II (EMAP II) on human glioblastoma (GBM) cells and glioblastoma stem cells (GSCs) as well as its possible mechanisms. In this study, EMAP II inhibited the cell viability and decreased the mitochondrial membrane potential in human GBM cells and GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) blocked th...
متن کاملEndothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells
Neovascularization is essential for growth and spread of primary and metastatic tumors. We have identified a novel cytokine, endothelial-monocyte activating polypeptide (EMAP) II, that potently inhibits tumor growth, and appears to have antiangiogenic activity. Mice implanted with Matrigel showed an intense local angiogenic response, which EMAP II blocked by 76% (P < 0.001). Neovascularization ...
متن کاملPro-EMAP II is not primarily cleaved by caspase-3 and -7.
Endothelial monocyte-activating polypeptide (EMAP) II is a unique cytokine, also known as p43, the active mature form of which exhibits antiangiogenic properties in vivo and in vitro. The proteolytic enzymes associated with the cleavage and release of the active mature form, however, remain unclear. Here we show that, in contrast to prior observations, purified pro-EMAP II is not cleaved by eit...
متن کاملCombination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway
This study aims to investigate the effect of Endothelial-Monocyte-Activating Polypeptide-II (EMAP-II) combined with temozolomide (TMZ) upon glioblastoma stem cells (GSCs) and its possible molecular mechanisms. In this study, combination of EMAP-II with TMZ inhibited cell viability, migration and invasion in GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) and chloroquine (CQ) partly revers...
متن کاملLow-Dose Endothelial-Monocyte-Activating Polypeptide-II Induced Autophagy by Down-Regulating miR-20a in U-87 and U-251 Glioma Cells
Preliminary studies have shown that endothelial-monocyte-activating polypeptide-II (EMAP-II) induces autophagy and inhibits the viability of glioma cells via an unknown molecular mechanism. This study explored the possible mechanisms associated with EMAP-II-induced autophagy in glioma cells by regulation of the expression of microRNA-20a (miR-20a). EMAP-II effectively inhibited the viability, m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017